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Correlations in Two-Component Log-Gas Systems 
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A systematic study of the properties of  particle and charge correlation functions 
in the two-dimensional Coulomb gas confined to a one-dimensional domain is 
undertaken. Two versions of this system are considered: one in which the 
positive and negative charges are constrained to alternate in sign along the line, 
and the other where there is no charge ordering constraint. Both systems 
undergo a zero-density Kosterlitz-Thouless-type transition as the dimensionless 
coupling F : =  q2/kT is varied through F =  2. In the charge-ordered system we 
use a perturbation technique to establish an O( 1/r 4) decay of the two-body 
correlations in the high-temperature limit. For F ~  2 +, the low-fugacity expan- 
sion of the asymptotic charge--charge correlation can be resummed to all orders 
in the fugacity. The resummation leads to the Kosterlitz renormalization equa- 
tions. In the system without charge ordering the two-body correlations exhibit 
an O( 1/r 2) decay in the high-temperature limit, with a universal amplitude for 
the charge-charge correlation which is associated with the state being con- 
ductive. Low-fugacity expansions establish an O( 1/r r) decay of the two-body 
correlations for 2 < F < 4  and an O(l/r 4) decay for F > 4 .  For both systems we 
derive sum rules which relate the long-wavelength behaviour of the Fourier 
transform of the charge correlations to the dipole carried by the screening cloud 
surrounding two opposite internal charges. These sum rules are checked for 
specific solvable models. Our predictions for the Kosterlitz-Thouless transition 
and the large-distance behavior of the correlations should be valid at low den- 
sities. At higher densities, both systems might undergo a first-order liquid-gas 
transition analogous to the two-dimensional case. 
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1. I N T R O D U C T I O N  

The natural domain for a system of charges interacting via the two-dimen- 
sional (logarithmic) Coulomb potential is a plane. Notwithstanding this 
fact, there is still interest in studying the statistical mechanics of log-poten- 
tial Coulomb systems confined to a line (we will refer to such systems as 
long-gases). Two-component log-gases have attracted interest because of 
some equivalences with models in solid-state physics (Kondo problem I~ 
and quantum Brownian motion problemt-'~), and the fact that for low 
density a Kosterlitz-Thouless-type pairing transition takes place as the 
temperature is lowered below the critical coupling F =  2. I~" 3~ 

In this paper we will study properties of correlations in the two- 
component log-gas with oppositely signed charges of strength q, and a 
variant of this system is which the positive and negative charges are con- 
fined to alternate in position along the line. For couplings F : = q 2 / k T > ~  1 
we also assume that the particles are at the center of hard rods of length a, 
which prevents short-distance collapse. So as to put our work in context, 
let us briefly review known properties of the critical behavior and correla- 
tions in two-component log-gas systems, and contrast this what is known 
about the two-component, two-dimensional Coulomb gas (2dCG) where 
appropriate. 

1.1. The Charge-Ordered System 

The system with charge ordering was first studied in the context of its 
application to the Kondo problemJ 1~ In this seminal work, Anderson et  al. 
transformed the grand partition function of the system with a hard-rod 
length a + da,  fugacity ~, and coupling F into the grand partition function 
of the system with hard-rod length a and modified r and F, thereby deriving 
a pair of coupled renormalization equations. The transformation, which is 
approximate, requires r and F - 2  to be small and is thus applicable in the 
neighborhood of the Kosterlitz-Thouless transition. Remarkably, applying 
this procedure to study the 2dCG, Kosterlitz ~4~ found essentially the same 
equations. Furthermore, for the 2dCG it is well known (see, e.g., ref. 5) that 
a renormalization procedure can be applied to study the charge-charge 
correlation and a certain length-dependent dielectric constant. Again, by an 
appropriate choice of variables, the resulting equations are precisely those 
found by Anderson et  al. 

One immediate prediction from the renormalization equations is the 
dependence of the critical coupling (Fc) on fugacity: thus for the charge- 
ordered system 

F,, - 2 = 25/2~ ( 1.1 ) 
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valid to leading order in F c - 2  and (. This phase boundary separates a 
low-temperature dipole phase in which the positive and negative charges 
are paired from a high-temperature phase in which the positive and 
negative charges are dissociated. More quantitatively, from the mapping to 
the Kondo problem, Schotte and Schotte ~6~ have argued that for the finite 
charge-ordered system of length L with periodic boundary conditions 

I (  )2) ~c(F)L for F < 2  (1.2) 
~.qix~-L/2 z~o~ (c(F)L 2 for F > 2  

This behavior, in which the boundary conditions play an essential role, was 
confirmed by Monte Carlo simulation. ~6~ 

In contrast to the phase indicator (1.2), the phases of the 2dCG can 
be distinguished by the dielectric constant e, which is finite in the dipole 
phase and infinite in the high-temperature (conductive) phase. We recall 
that if the system has dielectric constant e, then a fraction 1 - 1 / e  of an 
infinitesimal external charge density will be screened. Furthermore, e can be 
expressed in terms of the particle correlations by the formulas ~vl 

and 

' l+Tf ,,r C, rl 

1 flq f 
j dr F(r) p_ +(r )p_+(r)  

(1.3a) 

where C(r) denotes the charge-charge correlation, F(r) denotes the force 
corresponding to the two-body potential between two positive charges of 
unit strength (which is assumed to be smoothly regularized at the origin), 
p_+(r) denotes the distribution function between two opposite charges, 
and p_ +(r) denotes the dipole moment of the charge distribution into by 
two fixed opposite charges separated a distance r. 

In log-gas systems it can be argued that a dielectric phase has e = 1 
(see, e.g., ref. 8). A linear response argument then gives 

C(r)~o(-~) as r ~  (1.4a) 

On the other hand, in a conductive phase the charge-charge correlation 
must exhibit the universal asymptotic behavior ~9) 

q2 
C(r) ~ - F(gr)'- (1.4b) 

(1.3b) 
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In the sense of screening an infinitesimal external charge, the charge- 
ordered system is expected to always exhibit a dielectric phase (except 
possibly at the phase boundary). ~8) Hence, from (1.4a), the decay of C(r) 
should be faster than l/r 2 in both the low-temperature dipole and high- 
temperature phase. When the positions of the particles are restricted to the 
sites of a lattice (this mimics a hard-core regularization), the isotherm 
F =  1 is exactly solvableJ 9~ Both the truncated two-particle distribution 
functions between like and opposite charges, and thus C(r), exhibit an 
asymptotic O(1/r 4) decay in accordance with this prediction. 

1.2. No Charge Ordering 

Application of the rescaling method of Anderson et al. to the two- 
component log-gas without charge ordering leads to the conclusion (3) that 
the critical coupling is F = 2 independent of the fugacity, in contrast to the 
behavior (1.1). No other information is obtained. 

The charge-charge correlation function in the low-temperature 
dipole phase must again exhibit the behavior (1.4a). This has been 
explicitly verified for the solvable isotherm F =  4, where O( 1/r 4) decay was 
found. I1~ The high-temperature phase is expected to be conductive and 
thus C(r) should obey the sum rule (1.4b). The phase boundary F = 2 ,  
when the positions of the particles are restricted to the sites of a lattice, is 
a solvable isotherm tl~ 11) and it is found that C(r) has an O(l/r'-) decay, 
but with a density dependent amplitude. 

1.3. Outl ine of This Work  

From the above brief review, it is clear that there are many gaps in 
our knowledge of the critical properties and the behavior of correlations in 
two-component log-gas systems. To improve on this situation, we will 
make a fairly systematic study of the correlation functions in the high- and 
low-temperature phases as well as in the vicinity of the zero-density critical 
point. The charge-ordered system is considered in Section 2, while the 
system without charge ordering is considered in Section 3. Concluding 
remarks are made in Section 4. 

In Section 2.1 the two-particle correlations in the high-temperature 
phase of the charge-ordered system are analysed using a perturbative 
approach. The correlations in the scaling region are analyzed in Section 2.2 
by applying the low-density resummation method of Alastuey and Cornu (7) 
and in Section 2.3 the correlations in the low-temperature phase away from 
criticality are considered. In Section 2.4 the second BGY equation is trans- 
formed into Fourier space and a sum rule analogous to (1.3b) is obtained. 
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In Section 3.1, the two-particle correlations in the conductive phase of 
the system without charge ordering are studied using a linear response 
argument and macroscopic electrostatics, and a high-temperature resum- 
mation technique. The asymptotic behavior of the correlations in the 
dielectric phase are determined in Section 3.2 by studying the low-fugacity 
expansions at O((4), and an analysis of the second BGY equation similar to 
that given in Section 2.3 for the charge-ordered model is made in Section 3.3. 
From the latter analysis the behavior of the three- and four-particle 
correlations in the dielectric phase is deduced. 

In Section 4 we summarize our results with emphasis on the 
mechanisms behind the contrasting behaviors of the correlations in the 
log-gas with and without charge ordering. 

2. THE CHARGE-ORDERED LOG-GAS 

2.1. Decay of Correlations in the High-Temperature Phase 

Along the high-temperature solvable isotherm F =  1 it has shown by 
explicit calculation tgl that the charge-charge correlation decays as 0(1/r4), 
and thus by (1.4a) the system does not screen an infinitesimal external 
charge. Indeed, because of the charge ordering constraint, it was argued t91 
that this latter property is a general feature of the system for all tem- 
peratures. In particular, the high-temperature phase is not conductive, 
which suggests that the conventional methods of analyzing the high- 
temperature phase in Coulomb systems (Debye-Hiickel-type theories, etc.) 
are not applicable. In fact the familiar Abe-Meeron t 1_,~ diagrammatics, with 
Debye-like mean-field potentials resulting from chain resummations, can- 
not be applied here because the constraint of charge ordering is equivalent 
to introducing a many-body potential between the charges, whereas the 
diagrammatics holds for systems with two-body forces only. We use instead 
a perturbative method which relies on the special screening properties of 
the F =  0, contrained two-species perfect-gas reference system. 

2.1.1 .  C o r r e l a t i o n s  at I ' = 0 .  For F < I  in general, and F = 0  in 
particular, there is no need to regularize the short-range singularity of the 
logarithmic potentials, as the corresponding Boltzmann factors are 
integrable. Thus at F = 0 the log-gas system can be considered as a two- 
species perfect gas of point particles, constrained so that the two species 
alternate in position along the line. Let us suppose the first particle belongs 
to species + while the second particle belongs to species - (these 
boundary conditions will result in a symmetry breaking: the p + _ and p _ + 
correlation functions will not in general be equal), and there are N particles 
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of each species with coordinates x] ..... x N ( +  species) and y~ ..... YN 
( -- species), where xj, yj~ [ --L/2, L/2] ( j =  1 ..... N). The canonical parti- 
tion function Z2N for this system is defined as 

= ( •  den Zz,v. \ N ! J  J (2.1a) 

where * denotes the interlacing constraint on the interval [ - L / 2 ,  L/2]. It 
is easily evaluated to give 

1 
ZzN = ' . t z  ) ' "N "-------x Lzu (2.1b) 

The two-particle distribution p § +(x t, x2) is given by 

where 

N(N- 1) f*('~""'-) P + +(xl 'x2)  := Q2N dx3""dylv (2.2a) 

Q2~v = (N!)2 Z2N (2.2b) 

and *(xt, x2) denotes the interlacing constraint, given that there are par- 
ticles of species + at x~ and x2. The distribution p _ + ( x l , y l )  is defined 
similarly. 

To calculate p++(x , ,x2) ,  we note that in the interval [ - L / 2 ,  x~] 
there must be equal numbers of particles of each species, while in the inter- 
vals [x  1, x2] and Ix2, L/2] there must be one more particle of species - 
than particle of species +.  Let the number of particles of species + in each 
interval be M, ,  Mb, and Me, respectively (note that M ~ , + M b + M c =  
N - 2 ) .  Then we have 

P++(XI, X2) 
(N!)2 N--2 

- E 
Z2N Ma, Mh, Mc= 0 

Ma+mb+Mc=N--2 

(x I + L/2)2~~ x,) 2m~+l 

(2M,)! (2M b + 1 )! (2M,. + I )! 

(2.3) 

Substituting (2.1b), we can write this as 

( L )  p + + ( x l , x 2 ) - 2 N ( N - - 1 )  N _ _ xl + L ,  x2 - - x l , -~ - - x2  (2.4a) 



Correlations in Two-Component Log-Gas Systems 585 

where 

Sp(a, b, c) 

p/z- ~ P! a2M,,b2Mb + Ic2Mc + 1 
:= ~ (2Ma)! (2Mb+l) ! (2Mc+l) !  Aria, Mb, Mc 

Ma + Mb + Mc=p/2--1 (2.4b) 

Using the generalized binomial expansion 

p p~ 
(a + b + c) p = ~ a p' bP2c p3 (2.5) 

PI'P2"P3 =0 P l  ! P2 [ P3 ! 
Pl +P2 +P3 = 0  

it is straightfoward to derive the summation formula 

Sp(a, b, c) = �88 (a + b + c)P + ( - a  + b + c ) P - ( a - b  + c) p 

- ( - a  - b  + c)  p]  (2 .6)  

valid for p even. With this result the thermodynamic limit in (2.4a) can be 
taken immediately to give 

p + +(0, x)=pZ[  1 - e  -4p ixl] (2.7) 

A similar calculation shows 

p+_(0, x) =pZ[1 + e  -4p Ixl] (2.8) 

or alternatively this result could be deduced from the requirement 

�89 p + +(0, x) + p +_(0, x)] = pZ (2.9) 

which follows since the combination of two-particle distributions on the 
1.h.s. gives the two-particle distribution of the (unconstrained) perfect gas. 

The crucial feature of these distributions is that they exhibit perfect 
screening of an internal "charge." Thus 

f ~  d x [ p + + ( O , x ) - p + _ ( O , x ) ] = - p  (2.10) 

This property allows the correlations in the high-temperature limit to be 
studied by a perturbation expansion about the F =  0 constrained perfect- 
gas reference system. 

822/81/3-4-4 
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2 . 1 . 2 .  P e r t u r b a t i o n  A b o u t  r = 0. In any two-component log-gas 
system, the Coulomb interaction energy U can be written 

where 

u = � 8 9  Q(x')].r (2.11a) 

vc(lx-  x'[) := - l o g  [ x -  x'[ (2.1 lb) 
N 

Q(x) :=q ~ [,~(x-xj)-,~(x-yj)] (2.11c) 
j = l  

with the positive (negative) species at xj(yj) and 

[Q(x) Q(x')].c 

denotes that the product Q(x)Q(x') is formed with products over coinci- 
dent points excluded. In the charge-ordered two-component system the 
truncated two-particle distribution between like charges is given by 

( IN+(0)  N +(x,,) ].~e-PV)o 
p~++(o, xo)- (e_PU)o 

(N+(0) e-#V)o( N +(x,,) e-#U)o 
-- (e_PV)o (2.12) 

where the subscript 0 indicates that the averages are taken with respect to 
the constrained perfect-gas reference system and 

N 

N+(xa)= ~ d(x--x/) 
. / = I  

Next we expand the exponential in (2.12) to leading order in p. We 
obtain 

p~++(0,xo)--~ -~ dx dx' 
, - - o o  

x (N+(0) N+(x,)[Q(x) ' r , Q(x )],c)0 vc([x-x  [) (2.13) 

where the truncation is defined with respect to the three quantities 0, x~, 
and (x,x'). (~3~ When expressed in terms of the fully truncated Ursell 
functions there are two contributions. One involves only two-body Ursell 
functions, whiIe the other involves the four-body Ursell function. Since the 
Ursell functions in the reference system decay exponentially, the leading 
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contribution comes from the term involving the two-body functions. Hence 
(2.13) can be rewritten as 

p~++(0,x.)~ - f l  dx&'  

x (N+(0 )  Q(x))o(N+(x,,) Q(x'))o v~([x-x'[) (2.14) 

The two-body averages are given by 

(N+(0)  Q(x) )o = q(p(~ (x) - p~)+ (x) + po 6(x) ) 

= _ 2qpo e-4po I~1 + qPo 6(x) 

and 

(2.15a) 

( a(x') N +(x,,) )o = ( Q ( x ' -  xa) N+(0) )o  (2.15b) 

To calculate the leading large-xa behavior of (2.I4), we make the 
expansion 

v~(Ix-x ' l )=vdlxol)+ Y. ( x ' - x - x , , ) "  O" . . . .  n'=l n! Ox" v~(lx[) (2.16) 

Due to the perfect screening property (2.10) of the reference system and the 
fact the distribution functions in the reference system are even in their argu- 
ment, we see that the first nonzero term which results from substituting 
(2.16) in (2.14) is n =4.  Noting 

04 04 3! 
Ox 4 vc([x[) = --0-~41og Ix[ x4 

we therefore have that to first order in/-" and for large x ,  

pr++(O, x a ) ~ -  6Fp2 (2.17) 
(4p0x,) 4 

The leading asymptotics of pr+_(0, xa) can be computed in a similar 
way. In fact, since in the reference system 

p~+_(0, x) = -p~+ +(o, x) 

the only difference in the calculation is a minus sign, so we obtain 

6/'P~ (2.18) pr+_(O, x) ~ _pr+ +(0, x) (4pox~}4 
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Although (2.17) and (2.18) are valid of first order in F only, we expect 
the leading O(1/x 4) decay to persist in the high-temperature phase for 
F~< 1 at least, as the exact result at F =  1 ~~ exhibits this behavior. Indeed, 
we expect all terms in the F-expansion of the truncated two-body distribu- 
tions to decay as  1/x4; this would follow from a diagrammatic analysis 
similar to the one used by Alastuey and Martini TM The exact result also 
exhibits the property (2.18) relating the leading asymptotics of pr+_(0, x) 
and pr++(0, x), which suggests this may also be a general property of the 
high-temperature phase for F,,< 1 at least. 

2.2. Correlations in the Scaling Region of the 
Low-Temperature Dipole Phase 

For the 2dCG it has been proved ~4~ that all the coefficients in the 
low-fugacity expansion of the pressure and the correlation functions are 
convergent in the dipole phase (F~> 4). We expect this property to remain 
true in the low-temperature dipole phase of the log-gas systems (F>~2). 
With this assumption, we can consider the asymptotic large-r behavior of 
each such coefficient in the charge-charge correlation C(r) for F>~2. In 
particular we can consider the behavior for F ~  2 + as the Kosterlitz- 
Thouless transition is approached from the dipole phase. Motivated by the 
analogy between critical features of the alternating model and the 2dCG 
(in particular the occurrence of the same renormalization equations), we 
do this by closely following the strategy of Alastuey and Cornu ~7) in their 
analysis of C(r) in the two-dimensional system. 

For this purpose we introduce the asymptotic charge density Cj(r). 
This is defined as the terms in the asymptotic expansion of C(r) which, 
when replacing C(r') in 

A := 1 + q,_ J~ dr' r'C(r') (2.19) 

give the correct leading-order singular behavior of A for F ~  2 + at each 
order in ~. Note from (1.3a) that A is the analog of 1/e in the 2dCG. 
Furthermore, in the low-fugacity limit, A -  1 is proportional to the mean 
distance of separation between neighboring chargesJ ls~ Our objective is to 
calculate Ca(r) and A in the scaling region of the low-temperature dipole 
phase. 

2.2.1. Low-Fugacity Expansions. The low-fugacity expansions 
of the correlations can be obtained from the low-fugacity expansion of the 
logarithm of the grand partition function, with each positive (negative) 
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charge given a position-dependent fugacity (a(x;) ((b(y;)). The grand parti- 
tion function is given by 

S[a, b] = ~ (2NZ2N[a, b] (2.20) 
N = 0  

where Z2u[a, b] denotes the partition function for equal number N of 
positive and negative charges. The truncated distributions can be calculated 
from (2.20) according to the formula 

T p + ... + . . . . .  (rl ..... r,, ; sl ..... s,2) 
(~n I + n2 

-6a(rl) . . .  (Sa(r,,) Ob(sl)... 6b(s,,.) log 3[a, b] a=b= 1 (2.21) 

Now from (2.20) 

log 3[a, b] = (2Z,_[a, b] + ( 4 ( Z 4 [ a  , b] - �89 b]) 2) + O((6) (2.22) 

Using (2.22) in (2.21), assuming that the leftmost particle always has a 
positive charge, and writing the partition functions explicitly, we obtain for 
the two-particle correlations 

p T + + ( r ) = ~ 4 i i f _ a d y l i 2 a d y 2 ( r ( y 2 _ y l )  ) r  
\(y2--r) y2(r--yl) Yl 

fr~+Vl 
- \J,, yU ] + ~  

(2.23a) 

c- , i f  r-~ ~-~ ( ~'-~)x ~ - f  r ~ d~V Pr+-(r)='~ +~ ~2~, xj~ dY \ r ( x_y ) ( r_x ) y  j \j,, y r j  

+21; r_( , )r] +z~ +, (y--x)y(x--r)r  (y--x)r 

1 ( f ~  2o ~o  dx ) 1 

-t- O(~ 6 ) (2.23b) 

pr_+(r ) : ( 4  dy dx 
+ a  --oo 

x r ( y - x ) ( y - r ) x  y--rJ ] + O((6) (2.23c) 
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where it is assumed that r > 2 a  in (2.23a) and r > a  in (2.23b) and (2.23c) 
(for r less than these values the respective full distribution functions 
vanish). Also, the first double integral in (2.23b) is to be omitted if r < 2a. 
To the same order, the low-fugacity expansion of the charge-charge 
correlation follows immediately from the formula 

C(r) = 2q2p6(r) + ~ r q-[2p++(r)--pr+_(r)--pr+(r)] (2.24) 

2.2.2. Evaluat ion of  C(~|(r) and C~4)(r). Let us denote the 
term proportional to ~2j in the low-fugacity expansions of C(r), Ca(r), and 
A by C~2J)(r), C~2J)(r) and A (/~, respectively. From (2.24) and (2.23) we have, 
for r > a ,  

C~2)(r) = q2 (2.25) 

Substituting in (2.19) gives 

4/-,~20. 2 - r 
A~2~= 1 + (2.26) 

I ' - 2  

We note that A ~2~ is singular as F ~  2 + and furthermore to leading order 
is independent of a. Both features are true of A I-'"~ in general. The latter 
feature implies that only the large-r portion of C~'~(r) contributes to the 
leading-order singular behavior of A ~2''~, and thus C]2"~(r) consists of 
terms in the asymptotic expansion of C~2")(r). With n = 1 there is only 
one term in the asymptotic expansion, which is C~2)(r) itself, so trivially 
C~)(r) = UZ~(r). 

The analysis of the large-r behavior of the integrals in (2.23), which 
from (2.24) form Cr is done in Appendix A. There it is deduced that 

9 4 4F  f 1 -- C~4'(r)=--q'~ ~ l  ( F - - 2 ) 2 [ ( ~ ' )  2 r - - l ]  

1 [cr'~ 2 - r  r} 
2 r ) log (2.27) 

and the integral representation 

C~4)(r) = _q2(4 1 [.2~ 2.,--r 
rrL+ dxf~+~ dy~o.r)(x,y) (2.28a) 



Correlations in Two-Component Log-Gas Systems 591 

with 

4F 
6q~0. ~)(x, y) := ( x  - r ) ( y  - x )  r -  i (2.28b) 

is also derived. The r.h.s, of (2.27) has the remarkable property of having 
an identical structure to the corresponding expression in the low-fugacity 
expansion of the charge-charge correlation in the 2dCG [ref. 7, Eq. (4.13)]. 
Furthermore, the integral expression (2.28) can be interpreted as the con- 
tribution of a mobile positive-negative dipole (positive charge at x, 
negative charge at y) pair partially screening (note that in all phases the 
external charges are not screened at all since e = 1) the root dipole of 
separation r (positive charge at 0, negative charge at r). The distance of 
separation [ y -  x[ between charges within the mobile dipole is constrained 
to be less than the closest distance between this dipole and the root charges 
at 0 or r, and this closest distance is to be no greater than r. The factor 
of 4 comes from the 4 equivalent ways of arranging the mobile dipole 
about the root charges (the screening dipole may lie close to 0 or r, and 
inside or outside the root dipole). This "nested" dipole interpretation of 
C~41(r) is analogous to that found in ref. 7 for the quantity C~4~(r) in the 
2dCG. 

2.2.3. Nested Dipole Chain Hypothesis. Although we have 
calculated C ~ ( r ) ,  it may seen a formidable task to do likewise for 
C~2il(r), j ~  3. Indeed, an analysis similar to Appendix A does not appear 
to be feasible. Instead, having identified an analogy between C~4~(r) and 
C~4~(r) of the 2dCG, we adapt the method given in ref. 7 to calculate 

The basis of the method of ref. 7 is the hypothesis, which has its origin 
in the work of Kosterlitz and Thouless, ~16~ that the configurations con- 
tributing to C~2J~(r ~ / are all nested chains of dipoles, with the fixed dipole 
(positive charge at 0 and negative charge at r) the largest. The screening 
operator (2.28b) acts between dipoles connected in a chain. Furthermore, 
by including the factor of 4 in (2.28b), these chains can all be ordered to 
the right of the fixed negative charge at r. For example, at O((6), there are 
two distinct chains as given in Fig. 1. 

The contributions to C~6~(r) from these chains are 

2 x ~  - -  r 2 v ~  - -  A'~ .2 0 f.lx's 
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r . . . . . . . . . . . . . .  "i r . . . . .  -i 

' + ' r 

I i I i I 
r z2 Y2 Zl Yl 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -1 
[- . . . . . . . . . . . . . .  -1 i 

- + . . . . . . . .  + . . . . . . .  

I I I J I 
r z2 Y2 zl Yl 

Fig. l. The two distinct nested dipoles at 0(~6). The square braces indicate a screening 
operator which connects the charge on the left and with the dipole on the right end. 

and 

[/ -2r  /,2x2--r 2 2 ) ]  2r ~r 2 1 ) ]  
Jr+dX2Jx2+o. dy2~(O,r) (x2, [ ~f_b a d x l  dyl~(O,r)(X'' 

Furthermore,  the first of  these contributions needs to be weighted by a 
factor of  2 to account  for the relabeling degeneracy, and this linear com- 
bination needs to be multiplied by a factor of  -q2~6/(4! rr). 

At general order, the nested chain hypothesis gives [ref. 7, Eqs. 
(4.26)-(4.28)] 

where 

C]2")(r) = q2~2 ~(2.- 2) 
r r (2n - 2)-------~ S~2"-2)(r) (2.29a) 

. - ]  ( n -  l)! 
S~2"-2'(r)= ~ 1 p! (n-Z-l-~p)! 

• 2 q~O 
ql + ... +qp=n--l--p 

( n - - l - - p ) ! .  , , 
q--; T. -.,. qp'--"~. 12qj tr).." I2op (r) (2.29b) 
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with 

izq(r) = i122 ~ :2~,--~ S~'-q)( x dx Jx+~ dy ~o, r)(x, y) - y )  (2.29c) 

From the structure (2.29) it is shown in ref. 7 that the series 

Cz(r)= ~ C(aE")(r) (2.30) 
n=l 

can be summed whatever the form of 6q~o, r)(x, y), with the result 

q2(2 / f ' [  1 2r f~--r 
C,~(r) = ay 

x 5~r r)(x, y)(y -- x) r Cz(y -- x) ] (2.3 1 ) 

Since ~o,r~(x, y) is explicitly given by (2.27b), we see that it is possible to 
simplify the double integral in (2.31) by an integration by parts in the y 
variable. This gives 

Ca(r) = q2(2 r r-f-exp [ -4f l  log r ;S dx xC z(x) + 4fl ff  dx log x xC z(x) ] (2.32) 

This expression has the same structure as that of C~(r) for the 2dCG 
[ref. 7, Eq. (4.32)]. 

Introducing the length-dependent version of (2.19) by 

41" frdr , r'C,j(r') (2.33) A(r) := 1 + q2 j~ 

which gives the contribution to 3 from all particles of separation at most 
r and is analogous to the length-dependent dielectric constant defined by 
Kosterlitz and Thouless, ~6~ we can obtain from (2.32) and (2.33) the 
coupled differential equations 

and 

d dlog(r) A(r) = ~r2C,j(r) (2.34a) 

d - -  C z(r) = --FC z(r) A(r) (2.34b) 
dlog(r) 
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Making the change of variables 

y ( r )=  [--FCa(r)]'/2r, t ( r )= 1 -~-A(r) ,  

we find that the differential equations (2.34) read 

d 
-ffl y( l) =y(l) t( l) 

d 
-ffl t( l) = [ Y( l) ] 2 

l-- log r 

(2.35a) 

(2.35b) 

These equations, with different meanings for y(l) and t(l), are precisely 
those obtained by Anderson et al. ~ 

It is simple to solve the system (2.35) for t(l) in terms of y(/), where 
the constant of integration can be determined by putting r = a in the 
integral equation. We find, using r instead of l, 

[ F z (1 ~g4F'r-C~(r) = L 1 --~A(r) 1 + 4F~2cr 2 - r -  -~F) 2 (2.36) 

Now, assuming F >  2, we have from the low-fugacity expansion that Ca(r) 
is o(1/r'-) as r--* oo. Recalling the definition (2.19) and taking the limit 
r--, oo in (2.36), we thus have 

A = 1 - - ~ -  1 ( F _  2)2 - 1 (2.37) 

Notice that the radius of convergence of the resummed function in (2.37) 
gives the phase boundary (1.1). This expression for zl has an identical 
structure to that of 1/e in the scaling region of the dipole phase of the 
2dCGJ 71 

The resummation of Ca(r) can be performed by analyzing the differen- 
tial equations (2.34). This has been done in ref. 7 using these equations as 
they apply to the correlations of the 2dCG. From the working of ref. 7 
[Eqs. (4.41)-(4.50)] we find 

where 

f ~ \ F A  + N(FA -- 2) I 
+ ~ A,v~r) (2.38a) 

N=| 

dt - ]} (2.38b) A o = e x p { - - F ~ ; ~ t [ z i ( t )  A 
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and the A N c a n  be expressed in terms of Ao and the function 

2 (4 ( ) z / (F -  2) 2 
[ 1 -- 2(4()2/(F - 2) 2 ] i/z (2.39) 

Thus the coupling F is renormalized as the density-dependent quantity FA, 
and FA is the power involved in the expansion (2.38) of CA(r). 

2.3. Correlations in the Low-Temperature  Dipole Phase Away  
from Crit icality 

The analysis of Appendix A identifies the leading large-r expansion of 
pT++(r), pT+_(r), and p [ + ( r )  at 0((4) throughout the low-temperature 
dipole phase F >  2. Thus from the expansions (A6) we have 

(4F 
7"(4) (2.40) 

p + + (r) ~ p ~+~(r) ~ p ~ ( r )  ~ ( F -  2)2r 2 

In the case of n41 p ++(r) this behavior results from the contribution of the 
configuration A of Fig. 2 in Appendix A. Similarly, configurations in which 
each root particle is paired with a mobile particle to form a neutral cluster 

7"(4) ~ _T(4)(~ give the leading contribution to p +_( , j  and p_+~,j .  These configurations 
have the same statistical weight at large distances, which implies the same 
behavior (2.40) for _~41 p~+4), and _r14) k'++, - p - + .  

To calculate the large-r behavior of p r+~_'l(r), etc., for n > 2 we need to 
hypothesize the generalization of configuration A which is dominant in the 
respective integral formulas for r ~ ~ .  This generalization is to have all 
particles belonging to a neutral cluster about and including one or another 
of the root particles, with the interparticle spacing within a cluster small in 
comparison to r. The potential VzN between clusters can be written as 

V2N = Wo.Jr Wr.-~- Uor ( 2 . 4 1 )  

where W0 and W,. denote the electrostatic energies of the individual clusters 
about and including the root particles at 0 and r, respectively, and Uor 
denotes the mutual interaction. For large r, Uor is to leading order a 
dipole-dipole potential: 

0 0 .,-0 = o = PoP~ (2.42) Uor ~ Po 0-~Vo Pr Or log [x 0 -- r[ r2 

where P0 and Pr are the dipoles of the clusters about and including the 
roots particles. The situation for n > 2 is thus completely analogous to the 
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case 11=2 [recall the text below (A2)]. Insertion in the corresponding 
integral formulas and use of the expansion 

e - P V ~  ~ 1 - P U o r  + . . .  

thus leads to the results 

T(2n) . p++ 0 ) ~ p  + ~ _ ' ) ( r ) ~ p _ ~ Z + " ) ( r )  ~ - -  
~ ' - % , , ( F )  

r 2 

(2.43) 

(2.44) 

where the coefficient 0~2,,(C ) diverges as F-+ 2. This O(1/r'-) behavior can be 
understood as resulting from the dipole~lipole interaction between the 
neutral clusters at large separation. 

The configurations giving the leading large-r behavior of higher order 
correlations will again be neutral clusters and, analogous to the case n = 2, 
the potential between far-away neutral clusters will again be, to leading 
order, due to the dipole-dipole interaction and thus O(1/r'-). Hence we 
expect 

~z~ . . . . .  (xl ..... y, ..... y,,,) ~ p+...+ x,,,; . l~x~ki_ly~,k, i ._llxj_ydZ (2.45) 

as xjk:=Xk--Xj,  Yj'k' :=Yk'--Yj',  Ix j -yk ' l  ~ m, where we have omitted 
the amplitude. This asymptotic behavior requires at least one mobile par- 
ticle about each root particle, and thus does not necessarily apply for 
n < n ~  -}-n 2. 

2.4. A Sum Rule from the BGY Equation for C(x) 

It has been shown in ref. 7 that the BGY equation for the charge- 
charge correlation C(r) in the 2dCG can be used to derive a sum rule 
which expresses the dielectric constant in terms of the dipole moment 
p +_ (r) of the screening cloud surrounding two internal charges of opposite 
sign. In this subsection we will apply an analogous analysis to C(x) (we use 
x to denote any position coordinate, positive or negative, and r to denote 
a nonnegative quantity) for the charge-ordered system, which leads to a 
sum rule involving the distribution functions between charges of opposite 
sign and the dipole moments p + _ ( x )  and p_  +(x). 

The BGY equation for C(r) in the 2dCG has been derived from the 
BGY equations for the two-particle distributions. The BGY equation for 
C(x) in the two-component log-gas without charge ordering can imme- 
diately be read off from the 2dCG result [ref. 7, Eq. (5.10)]. However, the 
resulting equation is not applicable to the charge-ordered system for two 
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reasons: (i) the charge-ordered constraint introduces extra terms in the 
BGY equation for the two-particle distributions and thus for C(x), and 
(ii) the symmetry p+ _ ( x ) =  p_  +(x) assumed in the derivation is not valid 
in the low-temperature phase of the charge-ordered system. 

To derive the BGY equations for C(x) in the charge-ordered system 
let us then reconsider the BGY equations for the two-particle distribution 
functions. We suppose the logarithmic potential is regularized by hard 
cores of length a symmetrically placed about each particle. We know that 
without charge ordering and with smoothly regularized potentials 

v., ,_(x) =s~s . , v ( x )  

the BGY equation for the distribution p.~.,.,.(x) can be written in the form 
[ref. 7, Eqs. (5.8a), (5.8b)] 

0 T X 
Ox2 p'~' ''-(" v,) 

sls2FF(xl,_) r f = ps~.,.,(xl2) +s2flqp 2 d:% F(x3z) Q.,.,(Xl I X3) 

+ s ,  r f ~ ,~ T . - ~_ dx3F(" 32)[p: , . t s2+( .YI ,X2,  X 3 ) - - P . ~ s 2 _ ( X 1 , X 2 ,  X 3 ) ]  (2.46a) 

where 

0 
F(x) := ~ v(x), x , ,b '=xo-x~,  (2.46b) 

and Qs, ...... (x~ ,..., x,, [ x) denotes the total charge density induced at x given 
that there are charges sl ,..., s,, fixed at x~ ,..., x,," 

Qs, ........ (x),. . . ,  x,, I x)  = q 
[ p.,., ....... +(x ,  ..... x,,,  x ) - p . , ,  ...... _(x~ ..... x,,,  x )  ] 

Ps, ....... (xl ..... x,,) 

+q ~ s iO(x-x i )  (2.46c) 
i = l  

By considering the definition of ps,.,:_(x) in the canonical ensemble, it is easy 
to see that the only modifications needed to this equation due to the 
charge-ordering constraint and the hard cores are that 

Ps, s2~_~) (X l ,  X2 ,  X 2 - -  (7") - -  Psls2{ _s2)(Xl , X2,  X 2 + O') (2.47) 
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must be added to the r.h.s., and the smoothed potential v(x) replaced by 
vc(x) [recall (2.11b)]. The definition of Qs, (x l [x3)  remains that given by 
(2.46c) and the integration over x 3 remains extended over the whole real 
line. This is a consistent prescription, as the r.h.s, of (2.46a) can then be 
expressed entirely in terms of full distribution functions which vanish for 
configurations with [ x l - x : [ < a .  However, Eq. (2.46a) modified by the 
hard-core terms (2.47) is now valid for Ix,2[ > a  [notice that the 1.h.s. of 
(2.46a) diverges at [xl2[ = a ] .  

Adding (2.47) to the r.h.s, of (2.46a), multiplying both sides by q2s] s2, 
summing over Sl, s2 = _ ,  and using the definitions (2.24) and (2.46c) gives 
that the BGY equation for C(x) in the charge-ordered system with hard 
cores is 

0 

Ox2 

where 

- -  ( C( x ,2) - 2q2pcS( x12) ) 

F = 2Fp dx 3 Fc(x32 ) C(Xl3 ) ---I- Fq dx 3 No(x32 ) R(Xl ,  x2, x3) 
- - o c  - - 0 0  

+ qA(x  I , x,_) (2.48a) 

R(x~, x2, x 3 ) =  Z T ~. qsls3ps, ,:s3(" l, xz ,  x3) 
s l  �9 s 2 .  s 3  = • 

+ q ~ .  r p~., s,_(X t, X2) 6(X3 -- X l) (2.48b) 
s l  s2  

- ~ s3ps2.,.3(x2, x3) Q.,.2s3(x2, x3 1 x l ) -  2p C(x31) 
s_,. $, = + q 

(2.48b') 

[the symbol - denotes that (2.48b') gives the same value as (2.48b) when 
substituted in (2.48a); see the sentence below (2.48d)] and 

A ( x l ,  x2) = B(x l ,  x2, x2 -- a) -- B (x t ,  x2, x2 + tT) (2.48c) 

with 

B ( x l , x 2 ,  x ) = p  +_(X2, X) Q . _ ( x 2 ,  x [ x l ) - p _ + ( x ~ , x )  Q_+(x2 ,  x [ x l )  

- q ( , ~ ( x ,  - x2) - 6 ( x ~  - x)  )(p + _( x2, x )  + p _  + (x2, x )  ) 

(2.48d) 
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In deriving (2.48) we have used the equation 

f m d x  Fc(x  ) y~. s2s3Ps2s3(O, x )  = 0 
- - c ~  S2, S 3 ~  + 

which is a consequence of the first factor in the integrand being odd while 
the second factor is even. 

In preparation for analyzing (2.48a) we note that on the l.h.s, we can 
make the replacement 

0 0 
(2.49) 

OX 2 OX 1 

without changing its value. Similarly, on the r.h.s, we can write 

0 0 
F ~ ( x . _ )  = - v - -  v~ (x2~ )  = ~ v ~ ( x . _ )  OX2 OX 3 

(2.50) 

The coordinate x2 is now not involved in any operation, so for convenience 
it can be set equal to zero. Let us now proceed to transform the modified 
BGY equation into Fourier space. To do this we multiply both sides of the 
x2-independent form of (2.48a) by e jk'' and integrate over Xl with the 
condition Ix l [>  a. On the 1.h.s. we have 

0 ( f -_ :+I : )dx te~k" ' I -~[C(x , ) -2qZp6(x , ) ]  } (2.51a) 

which after integration by parts becomes 

- 2 i  sin(ka) C( a) + ik[ C( k ) - 2q'-p ] (2.51b) 

On the r.h.s, we can extend the integration to the entire real line 
because this side vanishes for Ix~] < a  and remains finite at [x~[ = a .  Now 
it follows from (2.48b) that R(xl, x2, x3) is a fully truncated quantity and 
thus the integral involving R on the r.h.s, of (2.48a) is absolutely con- 
vergent. The integral over x~ of this term can therefore be done before the 
integral over x 3. Doing this and using the convolution theorem in the first 
term gives that the Fourier transform of the r.h.s, equals 

av~(x3) -2Fpik~(k) ~(k)+Fq f d x 3 ~ R ( k ; x 3 ) + q Y l ( k )  (2.52a) 
- - 0 0  
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where, from (2.48b') and (2.48c), 

/~(k; x3)= )-" S3Ps2s3(O, X 3 ) ~ s , 2 s 3 ( 0 ,  ~'(31 k ) - ( ~ ) e  ik'3 C(k) 
S2 ,  S3 = + 

and 

q.4(k) = 2iq z sin(ktr) [ p + _(tr) + p _ + (tr) ] 

+ qp_ +(a)[ Q+_(0, - a  J k ) +  Q_+(0, tr I k)] 

-qp+_(a ) [Q+_(O,  a ] O) +Q_+(O, --a  I x ,)]  

(2.52b) 

[in deriving (2.52c) we have used the symmetry p + _ ( x ) = p _ + ( - x ) ,  
where p.~.,~,(x) :=psl~(0, x)]. 

To obtain the desired sum rule, we consider the leading-order small-k 
behavior of (2.51) and (2.52). The term independent of k on both sides 
vanishes due to sum rules for the perfect screening of an internal charge: 

f 
or5 

C(O) = dx C(x)  = 0 (2.53a) 
--oo 

and 

Qso~(x~, xb; O) := d x Q s o ~ h ( X . , X b l x ) = O  (2.53b) 

which are expected to be true in all phases of Coulomb systems/Iv) The 
leading small-k term is thus proportional to k. From (2.51), on the 1.h.s. it 
is given by 

- 2ikaC( ~r ) - 2ikq2p (2.54a) 

while from (2.52) the leading small-k terms on the r.h.s, are 

i -2Fp ik~c (k )  ~(k )  + i k F q  ~ s 3 dx  3 ps2~3(O, x3) pn~3(O, x3) 
S 2 , 3 3  = "4- - - o Z .  

+ 2iq2kcr[ p + _(a) + p _ +(o')] + ikqp _ + (o')[ p + _(0, -o ' )  + p _ +(0, o')'] 

- ikqp + _(o')[p + _(0, (7) + p _ +(0, -o ' ) ]  (2.54b) 

where 

f 
Ct5 

Ps, s,_(O, x3) := dx xQs, s2(o, x31 x)  (2.54c) 

(2.52c) 
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Let us now equate (2.54a) and (2.54b). The resulting equation can be 
simplified by recalling that p+ §  0 for all Ixl < 2or, and so 

C(a) = _q2[ p +-(a) + p_ +(a)] 

Furthermore, go(k) = zt/lkl, and by symmetry p§  § = p _ _ ( x )  = 0 for all 
x in any phase. We thus obtain the sum rule 

lim nflC(k) 
k~0 Ikl 

flq ~ dx Ov ~ l + ~ p  -~--~x [p_+(x) p _ + ( x ) - p  +_(x) p +_(x)] 

1 
+--[p_+(a) p_+(a)--p+_(a)p+_(a)] (2.55) 

qP 

which is to obeyed in all phases. However, we have commented in Sec- 
tion 1.1 that for the charge-ordered system C(r) is expected to exhibit a 
decay which is o(1/r2), except possibly on the phase boundary. Such a 
decay implies ~ ( k ) =  o(Ikl) and thus the 1.h.s. of (2.55) vanishes, leaving us 
with a simplified form of the sum rule which is to be obeyed by the system 
in all phases except possibly on the phase boundary. Note in particular 
that the dipole moment p+_(x) is nonzero in both phases. In ref. 9 it was 
claimed that p+ _(x) as calculated from the exact results at F =  1 vanished. 
However, in reviewing that calculation, an error has been found and the 
correct conclusion is that p+_(x) is nonzero at F =  1, in agreement with 
the general property. 

2.4.1. Verification of the Sum Rule for the r = 0  Reference 
System. We have shown in Section 2.1 that the F = 0  reference system 
perfectly screens an internal charge. Since the perfect screening properties 
(2.53) are the two fundamental assumptions in deriving the sum rule (2.55) 
from the BGY equation (2.48a), we therefore expect the sum rule to be 
satisfied in the reference system. Let us check this property. 

The reference system of Section 2.1 consists only of point particles, so 
the hard-core width in (2.55) needs to be taken to zero. Also, the final terms 
on the r.h.s, can be simplified due to the symmetries p+_(x)=p_+(x),  
p + _ ( x ) = - p _ §  and the pair potential in the reference system is 
identically zero. In these circumstances the sum rule (2.55) reads 

2 
0 = I - - - -  p +_(0) p+_(O +) (2.56) 

qP 

[ p + _ ( x )  is discontinuous at the origin, so it is necessary to specify its 
value on one side]. 

822/81/3-4-5 
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From (2.9), p + _ ( 0 ) =  2p 2. It remains to calculate p_+(x). F r o m  the 
(3) x definitions (2.54c) and (2.46c) we must  first calculate p +_ +(. 1, x2, x3) and 

p(3) t ~  _ x3), which can be done by an appropriate extension of  t h e  + - -  - -  ~,r 1 s X g ~  

method given in Section 2.1 to calculate p~_(x). We find 

p+-+(xl ,  x,_, x3) 
j'p3( 1 + e - - 4 p  I.x'3 --.x" 2 [ .q_ e -ap I.x-: -.,-, I + e -4p I-,3 - -,-t I), 

= [ p 3 (  1 + e - - 4 p  I.x'3 ---'r _ _  e - - 4 p  Ix2 - - x l [  - -  e-aP Ix3 - x l l ) ,  

and 

f o r  XI~X2~X 3 
for xl < x3 < x,_ 

(2.57) 

p+  - - ( x l ,  xz, x3) 

= ~ p 3 (  1 - -  e - 4 "  I-,-3-x.q + e - 4 P  I.,-2-.,-~ I _ e --41' Ix3 --Xl I), 
[p3( 1 + e -4p  Ix3 --x2l "~ e -4p Ix2 -x,I -t- e -4p Ix3 --.x'l I), 

for X l  ( X 2 ( X  3 

f o r  X 2 < X l  < X  3 

(2.58) 

Using (2.57), (2.58), and (2.9) to form Q+_(x~ ,  x2lx) as given by 
(2.46c), we can check the perfect screening property 

f~ dxQ+_(Xl,X2[x)=O (2.59) 

which together with (2.53a) is a fundamental  assumption in the derivation 
of (2.53). We can also calculate the first moment  of Q + _  to obtain 

p+_(x) p+_(x) = +-q~e -4p I-,t (2.60) 

where the positive sign is to be taken for x > 0, while the negative sign 
holds for x < 0. 

F rom (2.60) we see that indeed the sum rule (2.55) is obeyed for t h e  
F =  0 reference system. 

3. THE SYSTEM W I T H O U T  CHARGE ORDERING 

3.1. Decay of Correlations in the Conduct ive Phase 

For  F < 2  the two-component  log-gas without charge ordering is 
expected to perfectly screen an infinitesimal charge density. As noted in 
Section 1.2, a linear response argument  Isl then leads to the sum rule (l .4b) 
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for the asymptotic behavior of the charge-charge correlation. In this 
subsection we will note another derivation of (1.4b), using a new method 
due to Jancovici, ~18~ which is based on a linear response argument and 
macroscopic electrostatics. In ref. 18 the conductive phase is characterized 
by the applicability of macroscopic electrostatics at large length scales in 
the system. The log-gas in a conductive phase is thus considered as an 
infinite metal line obeying the laws of two-dimensional electrostatics. When 
combined with a linear response relation describing the change in the 
potential due to the addition of an external charge, this characterization 
implies (1.4b). Furthermore, it is clear that (1.4b) only applies to the leading 
nonoscillatory term of the charge--charge correlation only: the use of 
macroscopic electrostatics implies the charge density must be smoothed 
over some microscopic distance and thus the oscillatory terms averaged to 
zero. 

3.1.1. A b e - M e e r o n - T y p e  Resummat ions.  In three-dimen- 
sional classical Coulomb systems a systematic way to study the high- 
temperature conductive phase is via the Abe-Meeron ~'-~ diagrammatic 
expansion of the Ursell function hs~ s2 (r) [ : = p f.,., ( r ) /p  2 ]. This approach is 
also applicable to the present system. 

Briefly, let us recall (see ref. 19 for a detailed recent review of the 
method, and an extension to quantum systems) that h,., ~.2(r) is given by the 
sum of all the Mayer graphs built with the Mayer bonds 

f,~ ,2(r) = exp(-Fvs,,,_(r)) --  1 

(here the potential vs~,_, corresponds to the regularized logarithmic 
Coulomb potential between unit charges of signs sl and sz). Once the chain 
summations have been performed, the above set of Mayer graphs is exactly 
transformed into an a new set of "prototype" graphs H with the same 
topological structure and two kinds of resummed bonds: 

(i) The Debye-like bond r defined as the sum of all the con- 
volution chains built with the Coulomb potential s~s2v,.(r), and such that 

Fsls ,_~c(k)  
~.,.~,_(k) = 1 + 2 r ; ~ , . ( k )  

(convolutions of this bond are to be excluded). 

(ii) The resummed bond fR: 

f R ( r )  = exp[ --F(v,., ,~.(r) - sl  s2v~(r))  + Cs, s2(r)] - l - Cs, ,200 
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At large distances, v,, s , ( r ) -  sl s2vc(r) vanishes and so fR(r) behaves as 
~b~, n(r)/2. Now, since go(k)~ n/lkl for small Ikl we deduce from the defini- 
tion of the Debye-like bond that ~bs, .,..,(r) decays as 1/r 2 for large r. There- 
fore all the resummed bonds (i) decay at least as 1/r 2, while the resummed 
bonds (ii) decays as l/r4; the Ursell functions hsl.~,(r) therefore exhibit a 
1/r'- decay in the conductive phase. This is to be contrasted to the 1/r 4 
decay found in the high-temperature phase of the system with charge 
ordering, where the Abe-Meeron diagrammatics does not apply due to the 
presence of a many-body potential inducing the charge-ordering constraint. 

3.2. Decay of Correlations in the Dipole Phase 

Our objective in this subsection is to use low-fugacity expansions to 
deduce the large-r decay of the truncated two-particle distributions and the 
charge-charge correlation for / ' />2. Since in the system without charge 
ordering p++(r)=p__(r)  and p+_(r)=p_+(r)  it suffices to consider 
pr+(r) and pr+_(r). We will study in detail the terms of 0((4) since, as is 
argued below, the same asymptotic decay is expected of terms of higher 
order in (. 

At order (4 the low-fugacity expansions of the two-particle correla- 
tions can be calculated from (2.21), (2.22), and the explicit forms of the 
partition functions which occur therein. We find 

T(4) .x r4  rl* p++(-j----~ 
J 

and 

dXl dx, [~ r ( x , - x l )  r " - - - - -  - - S  
- I ( x 2 _ r ) ( x l _ r ) x l x 2  

1 ] 
Ix,lrlr-x21 r 

(3.1) 

pT+(4)(F ) = C 4 f *  d x  I d.x 2 

r ( x2 -x l ) ( x t - r ) x2  rr lx l -x21 r S l x z l r l x l - r l r  
(3.2) 

where 

Sf(Xl, x2) :=  �89 x2) + f ( x 2 ,  xl)]  (3.3a) 

and the notation * denotes the region of integration 

{ (x l , x2 )eR2: l x l - x2 l>cr ,  lxtl, l x 2 1 > ~ , l x l - r h l x 2 - r l > c r }  (3.3b) 
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From these expansions, and (2.24), we have 

Ci4)(r) = q2(4 f*  dx! 

- -  2 S  r ( x , _  

d rl r ( x 2 - x , )  r 
x2[l(x2-r)(x,-r)x,.x~_ 

x | (x2_r )  r 2 

~--r )x2  +rr lxt--x21rl (3.4) 

In Appendix B a method of analysis of the larger-r behavior of the 
integral (3.4) is given. We find that for 2 < F < 4 the region of the integrand 
which gives the leading-order contribution comes from the physical con- 
figurations 0c of Fig. 5 in Appendix B, while for F > 4  the configurations fl 
of Fig. 5 in Appendix B give the leading-order behavior. Furthermore, this 
remains true of the integrals (3.1) and (3.2). Here we will calculate the 
contribution to the large-r behavior of the integrals in (3.1) and (3.2) from 
these configurations. 

For the configurations 0c of Fig. 5, which give the leading large-r 
behavior for 2 < F <  4, we can replace ]x~- rl r and I x , -  r[ r by r r in (3.1) 
and (3.2), provided we also multiply by a factor of 2 due to the invariance 
of the integrand under the mappings x ,_-r  ~ x2, x t -  r~--, xl. This gives 

r14),, 2~4~ * [1 ]X2--X,' r S 1 ] 
P++(O- (ar)r j  dxl dx2 f2 Ix,---/TIx_,~ ~ ~ (3.5) 

and 

pT14)tr~, 2~46r 2 [* [ Ixll r 1 
+- t  s ( a r ) r j  dxl dx,_ S ix,__xll r ix,_lr Ix l -x2[  r 

(3.6) 

where * now denotes the region of integration 

{(xl, x2)eR: Ix , -x21  > 1, Ixll, Ix,_[ > 1} (3.7) 

and we have removed the a dependence from the integrals by changing 
variables xl ~ aXl, x2 ~ ax2. Note that the integrals in (3.5) and (3.6) are 
conditionally convergent: for fixed x, (or x_,) one must add the contribu- 
tions of positive and negative x2 (or x~). 

For F >  4, when the configurations fl of Fig. 5 give the dominant 
contribution to the asymptotics, the integrals (3.1) and (3.2) are analyzed 
by expanding the integrands for x~ near 0 and x2 near r (again we need to 
multiply by a factor of 2 to account for the symmetry in the interchange 
of x] and x,_). This gives 

. [ _r(4}t~ FA(u, v; r) + ~ -  (3.8) , ,++,.,_ f dudv r:fuv '- 1 \ , - : j  j 
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and 

where 

p:"_'(,-t ~ f* a.dv f=v?1 

uv 1 [['u--v'~ 3 

1 (/'/--U'~ 4 r  -- (/)~4- (/,/k}4] 
-4L, ,  ,--7-/ ~r/ , , r / j  

(3.9) 

(3.10a) 

and * denotes the integration region 

{(u, v)eiz: lul >or, Id >~} (3.10b) 

In performing the integrations, only those terms in the integrand even in u 
and v survive, so (3.8) and (3.9) simplify to give 

and 

+ + ~ ' ~  r 4 F _ 3 ) o  -r-3 

p r ~ ( r )  ~ ~4 2 F ( F +  3 ) 1 2 

(3.11) 

(3.12) 

The formulas (3.8) and (3.9) have some similarities and some differ- 
ences in relation to the analogous results for the 2dCG Fref. 7, Eq. (3.17)]. 
One similarity is that the O(l/r  4) terms proportional to F'- result from 
squaring the dipole-dipole potential uv/r z between the neutral clusters 
which form the dominant configurations. Another similarity is that 
A(u, v; r) is the multipole expansion (appropriately truncated) of the poten- 
tial between the neutral clusters, and that all terms odd in the mappings 
v ~ - v  or u~-, - u  vanish. A crucial difference is that in one space dimen- 
sion the log-potential is not harmonic, so unlike the two-dimensional case, 
the integration over A(u, v; r) does not vanish. The first nonvanishing term 
is the quadrupole-quadrupole potential, which has the same O(1/r 4) decay 
as the square of the dipole-dipole interaction. This term gives a contribu- 
tion of the same magnitude to both (3.8) and (3.9) but of opposite sign. 

At the coupling F = 4 the leading-order behavior of p~+~(r) is given by 
the sum of (3.5) and (3.11), and the leading-order behavior of p~+~(r) is 
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given by the sum of (3.6) and (3.12). At the c o u p l i n g / ' = 2  all regions of 
integration analyzed in Appendix B were bounded by an O(1/r 2) decay. 
However, it is possible to evaluate the integrals in (3.1) and (3.2) directly 
by using partial fractions. This is done below, where it is shown that 

and 

p r l 4 ~ , ~  2/t2(4 
++~.1 ~ 3r---~_ (3.13) 

p ~ ( ~ )  ~ 2='-r "" 
3r 2 (3.141 

In fact these results are precisely the values given by (3.5) and (3.6) at 
F =  2; the coefficient of the 1/r r term is therefore continuous as F ~  2 + 

For general n > 2 the large-r behavior of p++r~z"~(r) and p +~'~(r) can be 
deduced by hypothesizing the generalization of the configurations 0~ and fl 
of Fig. 5, which give the leading large-r contribution, for 2 < F <  4 and 
F >  4, respectively, to the integral expressions for _r~41~ and -r~4~O'~ The P + + ~ ' ]  P+-~,  ]. 
obvious generalization of configuration ~, which should give the leading 
large-r expansion for 2 < / ' <  4, has 17- 2 - p  mobile particles about one 
root particle and the remaining n + p, with 0 ~< p ~< 17- 2, mobile particles 
about the other root particle. The mobile particles are to be distributed so 
that the total charge of the cluster about and including one root particle is 
+q, while the total charge about and including the other root particle is 
- q .  At large distance the effective potential is thus q2 log r, which gives the 
required behavior as 

and 

Ta,,, A'+'2(F) ,,, 
p++ (r) ~ t--------~--- ~'- (3.151 

A'+~'2(F) 
p ~ " ( r )  ~ r - ' - - - y - - -  ~2,, (3.16) 

This is the same order decay as exhibited by (3.5) and (3.6) in the case 
n = 2, and furthermore the amplitudes could, in principle, be given integral 
representations analogous to those for n = 2. 

In particular, the coefficients in (3.15) and (3.16) should be finite as 
F ~  2 +. This would imply that C(r) as calculated from a resummation of 
(3.15) and (3.161 would exhibit the same power-law decay O(1/rr), 
independent of the fugacity ~. We therefore expect that the critical line 
separating the conductive and insulator phases to be at F--2,  independent 
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of the fugacity, which is contrary to what we have found for the charge- 
ordered system, but in agreement with previous studies. (3' _,o~ Thus the nested 
dipoles of Section 2.2.3 do not give the dominant contribution to C(r) in 
the system without charge ordering. In fact the analysis in Appendix B 
shows that the leading contribution of nested dipoles cancels out when the 
charge ordering constraint is removed. 

The generalizations of the configuration fl of Fig. 5, which should give 
the leading behavior for F > 4, are neutral clusters about and including the 
root particles. The potential V2N between these neutral clusters can be 
expanded as 

v 2 ~ =  Wo+ w , +  Uo~ 

where Wo and W~ are the electrostatic energies of the neutral clusters about 
0 and r, respectively. For large I", the potential Uo~ can be written as a 
multipole expansion in r. Analogous to the case n = 1, there will be two 
classes of terms contributing to the final leading-order expansions 

and 

2n (2n) 
rl "-,. . ~ A + + ( F )  

P++ 0)~ r4 (3.17) 

p ~ 2_,,,(,.) _ C-"A 7'2 ( r )  
r4 (3.18) 

3.2.1.  Decay at I ' =2 .  Here we will show how (3.13) and (3.14) 
can be derived. Consider for definiteness (3.13). From the Cauchy identity 

( r(x~-xl).~. "~Z=(de t I I /x l  1 / (x l - r ) ] '~  2 
Ix_, - r)(., 1 -- 1") 1/x2 x l  x 2 /  \ l l ( x , _ -  r)J ) 

we see that at F = 2 ,  (3.1) can be simplified to read 

_T(4)/.~ --  __(~4 f 1 (3.19) 
p + +~,j - dx, dxz (x2 - r)(xl -- r) x ,x2  

where the integration domain * is that specified by (3.3b). The integration 
over x2 can now be performed using the simple partial fraction expansion 

1 ,(,  320, 
(X 2 - r ) x  2 r x 2 - r  
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We must consider separately the regions - oo < xl < - 2 a ,  - 2 a  < xl < a, 
a < x t  <2a,  and 2 a < x t  < 1/2 [for x~ > 1/2 an identical contribution to 
(3.19) is obtained]. This gives, after changing variables x~ ~ ru, 

7"~4, 2(~4 {f--~ir + r Ii2 d/,,/ [ /,/+17"//" l 
p + + ( r ) ~ - -  r- T - ~ ~2~/,.(u--1)u log u--a /r  J 

-:1, du [ air - 1 + GIr l +f-2,#,-(u--1)u l o g ~ - - l o g  u-1---~-," J 

+(-o<. a, .+<,I, .-.1 +<,it ] .o,. <._,,u[,og  l-,og ,} 
where we have ignored an additive term log[(1 +a/ r ) / (1-~r / r ) ]  in each 
integrand since it decays as r--, oo. In fact the only portion of the integrand 
w h i c h  d o e s  n o t  d e c a y  as r ~ oo c o m e s  form the reg ion  u = O(cr/r). Se t t ing  
u = xa/r and keeping only those terms which are nonzero gives 

( f j  I ii ~- 1 x + l k  
^T,4>[,,, 4r ax log(l+x)+ axxlog]-~-~T_l ) (3.22) p + + t , I  ~ r -  ~ 

Evaluating these integrals gives the result (3.13). 

3.3. A Sum Rule from the BGY Equation for C(x) 

Our objective in this subsection is to derive sum rules analogous to 
(2.55) for the system without charge ordering. We will consider first the 
case when the logarithmic attraction between opposite charges is smoothly 
regularized. In this case we will provide an illustration of the sum rule 
using a solvable "parallel line" model at F =  2. The other case to be 
considered is the hard-core regularization used in the above subsection. 

Let us denote the smoothly regularized potentials by v.,.~.,~(x) and 
define the corresponding force by 

d 
C,  .,,(x) = - ~ vs..,._, (x) (3.23) 

(using this notation rather than that of Section 2.4 allows for the possibility 
of different regularization between like and unlike species). The BGY equa- 
tion for p,,.,(x~2) is then given by (2.46a) with sisjF(xo.) therein replaced 
by Fs,~.(xo). Assuming the symmetry 
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it is straightfoward to show from the BGY equation for Ps, s2(x12) that the 
BGY equation for the charge-charge correlation in this system is [recall 
the derivation of (2.48a) from (2.46a)] 

0 
OX2 
- -  [ C(xl2) -- 2qZp6(x12) ] 

f 
oC 

=Fp dx 3 [F++(x32)--F+_(x32) ] C(x, 3) 
- - ~ r  b 

+2Fq dx3 F++(x32)[p++(x32)Q+ +(x2, x3 ]xl)-(p/2q)  C(x31)] 

f 
oO 

-2Fq dx3F+_(x32)[p+_(x32 ) Q_+(x2, x3 lx l ) - (p /2q)  C(x31)] 

(3.24) 

We now follow the procedure detailed in Section 2.4 to study the 
small-k behavior of the Fourier-transformed version of (3.24). The final 
result is the sum rule 

~im ~C(k )  ~q f~  Ov+_(x) ._ -~[ I ---~ -o~ dx ~ p_+(x) p_+(x) (3.25) 

where the dipole moment p_+(x) is defined by (2.54c). In the distinct 
phases different terms in (3.25) have special values, which allows further 
simplification. In the conductor phase F < 2  we expect p_+(x)--0, which 
implies 

rcflC(k)/lk I = 1 (3.26) 

This result is equivalent to (1.4b). On the other hand, in the insulator 
phase (F>  2) the expected decay (1.4a) implies the l.h.s, of (3.25) vanishes 
and thus the dipole moment p_ +(x) is nonzero. 

In the case of a hard-core regularization of the logarithmic potential, 
working analogous to that given in Section 2.4 for the charge-ordered 
system shows that the sum rule (2.55) is still applicable. Without charge 
ordering the correlations obey 

p +_(x) p + _ ( x )  = -p_+(x) p_+(x) 
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so the sum rule reads 

lim rcfl~(k) 
k--o Ikl 

1 flq f oo Ov c 
- p  _ dx ~x P +-(x) P +-(x) 

2 
- - -  p + _ (a )  p + _(tr) (3.27) 

qP 

In the insulator phase ( F >  2) we expect the behavior  (1.4a), so the 1.h.s. of  
(3.27) will vanish. In the conductor  phase ( F < 2 )  the dipole momen t  
p +_ (x) should vanish and thus (3.26) is reclaimed. 

3.3.1. Veri f icat ion of the Sum Rule for a Parallel Line 
M o d e l  a t  1"=2 .  The 2 d C G  is exactly solvable at the coupling F = 2 ,  I~1~ 
where the multiparticle distribution functions can be calculated. The 
method of exact calculation used in ref. 21 can be adapted to a model  in 
which the negative charges (coordinates xj, j =  1 ..... N) are confined to a 
line and the positive charges (coordinates Xj, j =  1 ..... N) are confined to 
another  line, parallel to the first line and separated by a distance e. The 
pair  potential  between opposite charges of  unit strength is thus given by 

v_ + (x - X) = log[ (x - X) 2 + e 2 ] 1/2 (3.28) 

while the pair  potential  between like charges is the Cou lomb  logarithmic 
potential. Notice that  (3.28) is a smoothly  regularized Cou lomb potential. 
As such, the system should obey the sum rule (3.25). Let us verify this fact 
at the solvable coupling F =  2. 

To verify (3.25) we need to evaluate p_+(xl ,  x2), which requires the 
two- and three-particle distributions. Using the technique of ref. 21, we can 
easily evaluate the general distribution function as 

p + ... + . . . . .  (Zl  ..... iV,,. ; x l  ..... x,:)  

= d e t [  [G++(Xj, Xk)],k=~ ....... , 
[ [ G +  _~ (Xj, x , )  ] j= ,  . . . . . . .  l ; k =  1 . . . . . . .  2 

where 

G++(x)=G__(x)  =~o~ & 

(3.29a) 

[ G_  +(xj,  Xk)] j= l ....... 2: k= l ....... ,] 
[ G--(-xS-, xk ) ] j . ,=  l ....... _, J 

(3.29b) 

e2ra.w 
1 + (1/2*r~) 2 e 4he' 

(3.29c) 



612 

and 

Alastuey and Forrester 

l l  Io  "~ eZner + 2rcixy 

G _ + ( x ) = G + _ ( x ) =  2 "~ dy 1 +(1/2n~)Ze 4'~' (3.29d) 

We want to use these formulas to evaluate p+ _(x) as given by (2.54c). 
For this purpose we note from (2.46c) that 

P-+(x l , x2 )  Q-+(xl,x~_; x) 

= q(or+_ +(x, x], x2) - p r__ +(x, x l ,  x2) + ~(x; x 1, x2)) 

where 

(3.30a) 

~(x; x , ,  x2) = pp  ~+ _ (x,  x , )  + pp  ~+ +(x,  x2) - pp  ~_ _ (x,  x , )  - pp  ~ + (x,  x2) 

+ [ 6 ( x -  x2) - 6 ( x -  xl)] p_  +(Xl, x2) (3.30b) 

Now it follows from the perfect screening sum rule (2.53a) for a single 
internal charge [which can be verified using (3.29)], and the dependence 
of the truncated two-particle distributions p,,,.s,.(x,r " x') on [ x -  x' ], that 

f ~ dx xot(x; xl ,  x2) = q ( x z -  xt) pr_+(x,, x2) (3.31) 

Next, to evaluate 

x/ , :_+/x ,  x,, x2 / -o :_+/x ,  xl, x2/i /332/ 

we note from (3.29) that 

r x2) Or__ O + _ + ( x ,  x l ,  - + ( x , x ] , x , _ )  

= 2  Re(G+ +(x, x2) G +_(x2, xl) G_+(xl ,  x) 

--G++(x, xl) G +_(xl ,  x2) G_ +(x2, x)) (3.33) 

which shows that it suffices to evaluate 

fo~ dxxG++(r,  x2) G _ + ( x l , x  ) (3.34) 
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This latter task can be carried out with the aid of the formula 

f 
o~ 1 O 
-oo dx xe 2,~'xt~', -~,,_1 _ 2hi 071 6(71 - 72) (3.35) 

and integration by parts. Once having evaluated (3.32), we substitute the 
result in the integral over r of (3.30a) together with (3.31) to conclude 

p_+(x~ x2) p _ + ( x l , x z ) =  iqe [ fo~ e2,,~r+z,a~,~.,,.-x,I 
, (2n()2 [ jo d}, 1 + (l/2n() Z e 4 ' '  

f o  e2"r' + z,,iy. ~-,-2- ~,, } ] 
x d~l [1 +(1/2n()2e4"~"] 2 (xl~--~x2) ] 
+ q(x2 - x l )  pr__+ (x l ,  x2) (3.36) 

With the result (3.36) and the formula 

Ov_+(x) 1(  1 + 1 ) 
Ox 2 ~ x - i e  

for the force between opposite charges, all quantities in the integrand on 
the r.h.s, of the sum rule (3.25) are known. The integral can now be carried 
out by aid of the formula 

foo e2nith-~_,)x {1, ,l_Y2< 0 
- ~  dx x + ie - 2~ie 2,~(~, - ~-" )~ x O, otherwise 

We find 

f ~  Ov_+(x) qp (1 1 ) 
_ d x p _ + ( x )  p_+(x )  Ox 2 l + ( Q 2 n ( )  ~ (3.37) 

which thus evaluates the r.h.s, of (3.25). 
To evaluate the l.h.s, of (3.25), we note from exact formula (3.29) the 

large-x expansion 

which implies 

q2 I 
C(x) ~ 2(nx) 2 1 + 1/(2n() 2 

~p~(k) 1 
lim (3.38) 
k--O Ikl 1 + 1/(2nr 2 

Substituting (3.37) and (3.38) in (3.25), we see that the sum rule is indeed 
valid. 
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3.4. Decay of Three- and Four-Body Correlations in the 
Dipole Phase 

The decay of the higher order correlations can be studied using the 
low-fugacity expansion method of Section 3.2. Alternatively, the decay of 
the three-body correlations can be deduced from knowledge of the decay of 
the two-body correlations and use of the BGY equation. Let us consider 
this latter method. 

Suppose for definiteness that the logarithmic potential is smoothly 
regularized at the origin and v.,.~,=sjs~v, so that the BGY equation 
(2.46a) applies. Making the changes (2.49) and (2.50) allows the Fourier 
transform with respect to x~ of both sides of (2.46a) to be taken, with the 
result 

-ik~.T. , ,(k)  = _ ~ ~ ax ~ p.,.,.,~(x) 2 . s l s ,  F : " Ov(x) r eik. , ._slS2Fpik~(k) C(k) 

" [ P S l S 2 + ( k ,  ~ T  __ p s i  a,2__ ( ~ T  k + s 2 F  ~ dx 3 O, x3) , 0, x3)] 

(3.39) 

Now from (3.5) and (3.6), for 2 < F < 4  

1 
r andso p ~ , . , ( k )  ~ Ikl  r - I  (3.40) ps,~.(x) . , . ~  ixl r " k~o 

(here and below, the numerical amplitudes in the asymptotic formulas are 
omitted). The first term on both sides of (3.39) is thus O(Ikl r) [here we 
have also used F ( x ) ~  l/x]. Consider the second term on the r.h.s. Since 
v,.(k)=~/Ikl, nonanalytic behavior results from both the leading non- 
analytic and leading analytic term in the expansion of C(k): 

~(k)  ~ [k] r -  l +k'- (3.41) 

This term is of a lower order in k than the previous two considered and so 
must be balanced by the three-body term: 

f ~ ,  Ov(xa) - r .  k ~T k - ~  ax3 Ox-----~- [P"'~'+( "' 0, x3) -- P.,.2.-.-( , 0, x3)] 

~s~  pin sgn(k) ([kl r-~ +k-') (3.42) 
2 
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Note that for F >  3 the O(k 2) term is dominant. Taking the inverse trans- 
form suggests that for large Ix~l and fixed x 3 

r r ( ~O (sgn(x')'~, 2 < r < 3  

t 
p.,. s.,+(-x~, 0, x3) _ 0, x~) ~ \ Ix~l'- J 

O , F > 3  

(3.43) 

At F =  3, an extra logarithmic factor Is expected. 
The nonperturbative result (3.43) is an agreement with a low-fugacity 

analysis. In particular, the O(1/x~) behavior of r +(x~, 0, x3) at O(r P.~- 
which is dominant for F >  3, originates from the configuration in which the 
mobile particle of charge - s  forms a dipole with the root charge at x~. 
Explicitly, the first term of the multipole expansion of this charge con- 
figuration which gives a nonzero contribution to the cluster integral is 

02 O 1 
( u -  x,)2(x3 - x2) -z--Sox; ~ ( - l o g  I x , -  x21) -  x~i (3.44) 

For the four-body correlations, an analysis of the BGY equation for 
the three-body correlations analogous to that given above leads to the 
conclusion that for all F >  2 

1 T (3.45) p., . . ,_ _ ~ _,,i.,~l_.,:~(xi, x,,  x3, x4) (x, -x3)'- 

as Ix1-x3l--* oo with I x l - x 2 [  and Ix3-x41 fixed. 

3.4.1. Exact Decay of a Three-Par t ic le  Corre lat ion at r = 4 .  
A version of the two-component log-gas system without charge ordering, in 
which the two species of charges are confined to separate, interlacing sub- 
lattices (lattice spacing ~), is exactly .solvable at the isotherm F =  4. t~~ In 
particular, the exact expression for the three-particle correlation involving 
opposite charges is 12~-I 

pr+__(n, ml --,1/2, m2 - 1/2) 

= �89 Tr [B+ _(11, m l -  1/2) B__(ml  -- 1/2, m,_- 1/2) B_+(m2-- 1/2, n)] 

+ �89 Tr[B+_(17, m2 - 1/2) B _(m2 - 1/2, m, - 1/2) B_ +(ml - 1/2, n)] 

(3.46) 
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where 

with 

and 

with 

B+_(n, m, - 1/2) = (flls(ll) 
\ f l l4(l l )  

B_ + ( m z -  1/2, n) =//fl3,(/2) 
\fl14(12) 

flSl(/ l)J 

fll3(12)J 

fO e2nilt 
ills(l) = ~ J ( 1  +~)  dtD(t---- ~ 

f~ ezra'( 1 ) flt4(l) 2 n ~  ( 1 -- ~) d t  - t = r-.----- 5- 

flSj(/) 2rC3~" fO e2n& 
= ~s---T (1 + r dt-D-~t(t-1) 

D ( t ) : = l - - 1 6 ~ ( t 2 - - t + l / 8 ) + 4  2 , r :--- r 

ll :=n-(mt-1/2), 12 :=m~-- l/2-n 

_ ( ~ , -  1/2, m, - 1/2)= (~,,G) &,,(6)) 
- _ \fl12(13) flll(ls)J 

1 e-'"" ( t - ~ ) - ' ]  fl"(l) = ;o dt~)I~2-4~t(l-t)-4~ 
1 e 2.i# / 

fl,z(l)=4(~),iIO dt~(-~t-~) 

]721(1) 16(n_/r) ~ dt t -  t ( t -  1) 

l 3 .'=/7'/1 --/7-I 2 

We seek the asymptotic behavior of (3.46) for Ira21--" co with n and m~ 
fixed. Now, straightforward integration by parts of the above integrals 
gives 

/~13(/) ~ ,  f131(/) ~/1-~, ill4(/) ~/1~ 

1 1 1 
P"(/)~' /~'#) ~7' P~'(~)~ 
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and thus 

(1/m• 
B_ _(ml -- 1/2, rn 2 -- 1/2) B_ +(m2 -- 1/2, n) ,-., \t/rn~ 

(1/m 3 
B+ _(n, m2 - 1/2) B__(m2 -- 1/2, mt - 1/2) ~ \l/m~ 

Substituting (3.47) in (3.46) gives that 

pr+__ 

1/m4) 
i/m3 j (3.47a) 

1/m~'~ 
1/m~J (3.47b) 

(n, ml -- 1/2, m2 - 1/2) ,-2"~ ~ l/m3 

in agreement with the prediction (3.43). 

4. S U M M A R Y  AND C O M M E N T S  

We have undertaken a systematic study of properties of the particle 
and charge correlation functions in the two-dimensional Coulomb gas 
confined to a one-dimensional domain, with and without charge ordering. 
As a result some new properties have emerged. 

Consider first the system with charge ordering. In the high-tempera- 
ture phase we have found an O(1/x 4) decay of the two-particle correlations 
as given by (2.18). The system does not screen an external charge density, 
as this would lead to (1.4b) and thus an O(1/x ~) decay. However, the 
underlying reference system at F =  0 does screen an internal charge. This 
allows an expansion of the large-x two-particle correlations to made 
about F = 0  and leads to the O(1/x 4) decay. For F--* 2+, it was shown in 
Section 2.2 that the asymptotic charge-charge correlation can be resummed 
to all orders in the fugacity, and that the Kosterlitz renormalization equa- 
tions result. The radius of convergence of the quantity A, (2.19), as given 
by (2.37) gives the dependence of the critical coupling on the fugacity, 
analogous to the situation with the resummed dielectric constant in the 
2dCGJ 71 Furthermore, the configurations contributing to the asymptotic 
charge-charge correlation were identified as nested dipoles, analogous to 
situation in the scaling region of the Kosterlitz-Thouless transition of the 
2dCG. Away from criticality in the low-temperature phase the two-particle 
correlations have an O(1/r'-) decay as given by (2.44). In a Iow-fugacity 
perturbation expansion this behavior can be understood as resulting from 
the dipole-dipole interaction between neutral clusters of particles about 
each root particle. In all phases the correlations must obey the sum rule 
(2.55) involving the dipole moment p §  of the charge distribution 
induced by two fixed opposite charges. This sum rule is analogous to the 
sum rule (1.3b) for the 2dCG, which relates the dielectric constant to p _ +. 

822/81/3-4-6 
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Now consider the system without charge ordering. In the high-tem- 
perature phase F~< 2 the system is conductive and the charge correlation 
must exhibit the asymptotic behavior (1.4b). The low-fugacity analysis of 
the two-particle correlations given in Section 3.2 implies a O(1/x r) decay 
for 1 ~<F<4 and an O(1/x 4) decay for F~>4. In the context of the low- 
fugacity expansion this behavior results from configurations consisting of 
clusters about the root charges which have a charge imbalance equivalent 
to that of one particle dominating for 2 < F < 4 ,  while neutral clusters 
dominate for F >  4. Furthermore, for F ~  2 + the coefficients of the low- 
fugacity expansion of the large-x two-particle correlations are all finite; 
there is no dominance of nested dipole configurations, which in fact cancel 
without charge ordering. The finiteness of the coefficients indicates that the 
phase transition occurs at F = 2  independent of the fugacity. With a 
smoothly regularized potential, we have presented the sum rule (3.25) 
involving the dipole moment p+_(x),  and explicitly verified it on a 
solvable model at the coupling F =  2. 

As far as large-distance behaviors of the internal correlations are 
concerned, the system with charge ordering is very similar to the familiar 
2D Coulomb gas. Indeed, the charge correlation have a "fast" decay in the 
high-temperature phase (1 / Ix l  4 in comparison to an exponential decay in 
2D), and as a density-dependent power law in the low-temperature phase 
(1/Ixl r~ in comparison to 1/[rl r/~ in 2D). The partial screening of a given 
pair (with sizes X in 1D and R in 2D) by smaller pairs takes the same 
mathematical form for both systems, because of the occurrence of the 
integrals 

<.,.< x dx ~-~ log Ixl (4.1a) 

and 

~ <r<R dr (• log r) 2 (4.1b) 

which both diverge logarithmically when X and R go to infinity. The 
integral (4.1a) arises from the dipole-dipole potential between the 
screening pair and the root charges. The resulting screening contribution is 
proportional to the average of the dipole carried by this pair, which does 
not vanish, by virtue of the charge ordering constraint. 

Of course, the screening contribution associated with (4.1a) disappears 
in the system without charge ordering. The leading contribution of a 
screening pair then involves 

w-log Ixl (4.2) 
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which is linked to the fluctuations of the dipole--charge potential between 
this pair and the root charges. The integral (4.2) does converge in the limit 
X ~ oo, and consequently the collective effects do not affect the power which 
controls the algebraic decay of the charge correlations. The Kosterlitz- 
Thouless transition temperature is then expected to remain constant ( F =  2) 
at low densities. This is contrary to the finding of a recent computer simula- 
tion, ~23~ where the transition coupling appeared to decrease with decreasing 
density. However, we believe these findings are linked to finite effects which 
become more and more important as the density decreases. Indeed, in the 
zero-density limit and with 1 < F < 2, the proportion of free charges goes 
to zero (see, e.g., ref. 15), a behavior which is reminiscent of the short-range 
collapse at F =  1 for the system without hard-core regularization. In this 
regime of parameters, the finite systems considered in the numerical simula- 
tions are not efficient for perfectly screening external charges, because 
of the very small number of free charges which are available. A similar 
mechanism also occurs in 2D, 124J and even in 3D ~25~ for the restricted 
primitive model with 1/r interactions (in that case there is no Kosterlitz- 
Thoutess transition). Eventually, we note that at high densities, despite 
difficult problems of sampling, the numerical simulations ~23~ are compatible 
with the theoretical predictions given here and in ref. 3. 

Our predictions should be valid at tow densities. At higher densities, 
the critical Kosterlitz-Thouless transition line in the (p, T) plane might 
bifurcate, at a tricritical point, into a first-order liquid-gas coecistence 
curve. In fact, for the 2D Coulomb gas, this has been observed in computer 
simulations by Caillol and Levesque. ~26~ More recently, an extended 
Debye-Hiickel theory of Levin et al. 1271 suggests a tricritical point at a 
much lower density. To our knowledge, such first-order transitions have 
not yet been observed for the present models in 1D. At a theoretical level, 
their study is beyond the scope and the methods of this paper. In par- 
ticular, a correct description of eventual oscillatory correlations ~28~ beyond 
a Fisher-Widom line requires further resummations of the low-fugacity 
expansions combined with a detailed account of the short-range effects 
which depend on the hard-core regularization. At the moment, we note that 
for the model without charge ordering, the exact results for the solvable 
isotherm F =  21L0, ~ seem to exclude the above bifurcation process. 

A P P E N D I X  A 

Our objective in this appendix is to show how the integrals in (2.23) 
can be analyzed to determined the asymptotic charge density C~a4)(r). We 
recall C~4~(r) is defined as the portion of C(r) proportional to ~4 which 
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contributes to the correct leading-order behavior of (2.9) in the limit 
F- - .2  + 

We will illustrate our method by calculating the contribution to C~ 4) 
from p~)+(r). Scaling the integration variables by 

ylv-+ry] a n d  y21--~ry2 

we read off from (2.23a) that 

,,4,,.,_ c' [f'-:," 
p + + , . s - - ~  i_or dy] ]+air 

x ( Y2--Y~ r 
\(Y2-- 1) y2(l - - y ] )y ] ) )  

Y 2  

F2F- 2 ] 

( -f T- i]'q (A1) 

The fixed root points are now at 0 and 1. Let p be a positive constant 
such that a/r </~ ~ 1. Then for the region of integration/~ < y i < 1 - F and 
y 2 > l + / ~  in (A1) the integrand is bounded uniformly in r and is 
integrable. Hence the contribution to the double integral is O( 1 ), and from 
(2.19) the corresponding contribution to A (41 is 0( (4 / (F-2 ) ) .  To analyze 
the contribution from the remaining region of integration we decompose it 
to the subregions indicated by the particle configurations in Fig. 2. 

Consider subregion A in which 

air <-. y ] <~ F and air <~ Yz - 1 <~ lt 

Since y] and Y2-  1 are small variables, we can expand the integrand: 

( ,2-,,  
( y , _ - l ) y 2 ( 1 - y ] ) y  ] ~ ( y 2 - - 1 ) r y f  [ I + F y I ( y z - I ) + ' ' ' ]  

This shows that the leading large-r contribution to the double integral from 
subregion A is 

r 2F-2  F 

(F- -  I) 2 + ( F -  2) 2 (rr-'- -- 1)2 (A2) 

Substituting (A1) in (A2) shows that the first term cancels. To leading 
order for large r the second term gives a contribution 

(4F 
~4)  

P ++(r )~(F_2)Zr2  
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A 
" i .2 

air 1 + a / r  

) + p  

+, L 
1 - p 1 [ 2 

I 

1 - a i  r 1 + a i  r 

B(ii) -11- 

o ~ - .  I '  I ~*" 
1 - a / r  2 - y~ 

C(i) v, -71- u~ 

I 
0 1 l + p  

a/r 

I I 
0 I-~ [ 1 l + p  

1 - a/r 

Fig. 2. Some regions of in tegrat ion in the integral  (A1) for ~4) p + + ( r ) .  

The first moment of this term (considered as a function defined on [a, oo)) 
is infinite. However, the entire second term in (A2) is exactly canceled in 
the formula (2.24) for C(r) by an identical term contributing to p ~ ( r ) ,  so 
there is no net contributed to A (4). 

Next consider the subregion B(i) in which 

air <<. 1 - Yl <Y and air <<-Yz- 1 <<. 1 - Y l  (A3) 

Expanding the integrand in (A1) given these conditions, we have 

y E - 1 ) y z ( 1 - y ] ) y l  ( l - y 1  l + F y 2 _  1 + " "  
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The corresponding contribution to the double integral is 

fJ-'~/" dyl f,+(l->,,) 1-,, (i ~ y l ) r  j, +~,/~ dy2 

f,-~ .~, f,+,,-,.,,.y. + F  j t, ( 1 - - y j ) r - J ' l + ~ l ,  yz - -1  (A4) 

When evaluated for large r these two integrals give 

(rla) r -2  

F - 2  

and 

(A5a) 

.o.,'}) 
(A6a) 

. ( ,  ,,4,> 
respectively. The corresponding contribution to zl (4) from (A5a) is 
O ( I / ( F -  2)2), while the contribution from (A5b) is O ( I / ( F -  2)3). Hence 
(A5a) does not contribute to C(s4)(r). 

The analysis for region B(ii) proceeds analogously to that of region 
B(i) just presented. We again find contributions (A5a) and (A5b). In 
regions C(i) and C(ii) we find a contribution to A (4) which is O( i / ( F -  2)2). 
This region does not contribute to C~4)(r), and since all regions are now 
exhausted, the terms in the asymptotic expansion of p~+~(r) which con- 
tribute to ,4 t4~ give a contribution to the latter which is 0 (1 / (F -2 )3 ) .  
Adding all such terms, including the term corresponding to (A2) which 
gives a divergent contribution to ,4, c4~ we obtain the expansion 

p++(r) r2r_ 2 1 -  

1 [(r; -'-11 <r,": 

The first term originates from subregion A, while the remaining two terms 
have equal contributions from subregions B(i) and B(ii). 

A similar approach suffices to analyze the terms in the asymptotic 
expansions of (2.23c) and (2.23b) which contribute to A t4). We find 

p_~"+) ( r )  Q r  - -" :-,>: .:-. E (-;)" - ' ]  ,,6,> 
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and 

p ~ ( , . )  ~ ~4 ( ( F F 2 )  2 1 

8F , 1 r f r , r , 2 _ l  ] I / r \  r-2 
+ r2r_-------~_ L\~; J ( F - 2 )  2 

(A6c) 

The particle configurations corresponding to the subregions of integration 
contributing to the terms in these expansions are given in Fig. 3. 

- -  + - -  

- /1 0 1 

-~/r l+~/r 

b(i) 

b(i i )  

t ,  
0 # I - It I 

,71r  l - o'1,- 

_ _  - ~ _ _  d 

I ~ I x ,.. 

0 1 2x-I 

l + ~/r 

x - I > y - x  

b( i i i )  

+ 

I 
0 

/ ~ - I < ~ y - x  
- -  T 

I ' .v 

I l +p 

I q- o' / r  

Fig. 3. The configuration (a) gives the term in (A6b), while the configuration b(i) gives 
tile first term in (A6c). The configurations b(ii) and b(iii) both contribute equally to the 
remaining terms in (A6c). These configurations each have a multiplicity factor of 4, which 
corresponds to the four ways of placing the mobile pair x and y on either side of the two root 
charges. 
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Forming the combination (2.24) of (A6a), (A6b), and (A6c) required 
to form C(r), we see that a lot of cancellation takes place, and the result 
(2.27) of the text results. Furthermore, it is important to observe that due 
to the cancellations only p~+4_)(r) contributes to C~ ) and this contribu- 
tion is restricted to the region of integration depicted in b(ii) of Fig. 3. 
Analogous to (A5b), this contribution can be written as a double integral, 
which is given by (2.28) of the text. The integrand of the double integral 
is obtained from the expansion of the integrand (excluding the factor of 
l/r r) in the second double integral of (2.23b): 

x( y -- r ) .'~ r _  f l "~ r s 
( y - - x ) y ( x - - r ) /  \ (x--r)(y--x)  r - l  (A7) 

valid for x - r and y - x small and positive with y - x < x - r. The domain 
of integration is that implied in configuration b(ii) of Fig. 3. 

A P P E N D I X  B 

Our objective here is to study the leading large-r behavior of the 
formula (3.4) for C(4)(r) as a function of/ ' .  We begin by changing variables 
xl ~ ru, x2 ~ rv, so that (3.4) reads 

([ u-v uvF C(4)(r)--r2--fi-~5_2j dudv (v-1)(---~-l) 

u(v-- 1) r 2 ) 
- 2 S  (u-v) (u- -1)v  lu_vlr_ (B1) 

where * denotes the integration region 

{(u, v)e R2: lu-v l  >a/r, lul, Ivl >a/r, l u -  11, I v -  11 >a/r} 

Due to the integrand being symmetric in u and v, and unchanged by the 
mapping u ~ 1 - u, v ~ 1 - v, we can restrict the integration region to 

{(u,v)eR2: u > v , v >  l - u ,  lu-vl>~r/r, l u - l l ,  lv - l l>tr /r}  (B2) 

provided we multiply the integral by 4. Let us divide the integration region 
(B2) into labeled and unlabeled regions as indicated in Fig. 4. 

All regions outside those labeled in Fig. 4 give a contribution to C(4)(r) 
which is O(1/r~r-~). This follows from (BI), since the range of the 
integrand is independent of r in these regions. The range of the integrand 
is not independent of r in the labeled regions of Fig. 4, and consequently 
further calculations are needed. 
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, '1o~ . . . . . .  C . . . . . . . . .  

;E 

D 

Fig. 4. Regions of integration in (B2) which are used to analyze the integral (BI) for Cta~(r). 
A distance air either side of each dashed line bordering or contained within a region is to be 
excluded. 

Let us illustrate our method of analyzing the leading-order contribu- 
tion from the labeled regions by considering region D. The total contribu- 
tion to C(4)(r) from this region is given by 

i p  -- a/r q2~4 f• , ( ~/r + i_,, ) dv F(u, v) (B3) 
r 2F-- ' '~2 J l  + p  au 

where F(u, v) is the integrand in (B1). For large r the leading contribution 
to (B3) comes from the neighborhood of Iv l  = air. We can thus ignore the 
last term in (B1), and the term implicit in the symmetrized form of the 
second term in (B1). Expanding the remaining two terms for small v gives 

ivlr ( u _  l )r - - +  2 + +0(03) 

in place of F(u, v) in (B3). 
Evaluating this integral to leading order for large r gives behaviors 

0 / ' l o g  r'~ 
\ r4 ] ,  F = 3  (B4) 

O ( ( r _ l ) r r + , ) ,  r > 3  

Proceeding similarly, we find the leading large-r contributions from the 
labeled regions of Fig. 4 to be as in Table I. 
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Table  I 

Region 

Contribution to C(41{/') 

2 < / ' < 3  1"=3 / ' > 3  

,.,.,.o o ( ~ )  or,o..~ , 
\ r" ) O ( ( F - - 3 )  rr+l)  

. o@ o(~) o(~) 
0 1 

(~') 

+ 

I 
0 

1-17 +l 
l - p  I 1 l + p  

I - a i r  I + air 

_ _  _ _  

, q? q 
0 l - - p  I I l + p  

l - a i r  l+#Ir 

- p  

{~} 

0 p 1 - #  I 1 1 + ~  

-#lr a i r  1 - air + # I t  

i 

~ T -  I~T + 
- p  0 l - - p  1 l + p  

-#/r #/r 1 - a/r 1 + #/r 

Fig. 5. Charge configurations corresponding to regions ~ and fl in Fig. 4, which give the 
leading-order contribution to C{4){ r) for 2 < F < 4 and F > 4, respectively. The arrows indicate 
alternative placement of mobile charges. 



Correlations in Two-Component Log-Gas Systems 627 

H e n c e  t he  l e a d i n g - o r d e r  c o n t r i b u t i o n  to  C(4)(r) c o m e s  f r o m  reg ion  cc 

for  2 < F < 4 a n d  f r o m  r e g i o n  fl for  F > 4. T h e s e  r e g i o n s  c o r r e s p o n d  to  t he  

c h a r g e  c o n f i g u r a t i o n s  o f  Fig. 5. 
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